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The factor in the singular part of solution of the problem of longitudinal oscil- 
lations of a plate with a straight crack is determined by the method of finite 

elements with the introduction of a special finite element that takes into acc- 
ount the singularity at the crack edge. 

The method of finite elements was used in dynamic problems of linear fracture 
mechanics due to stationary crack in connection with the investigation of shock wave 
diffraction by a longitudinal shear crack [l]; it proved to result in a considerable error. 
The method of difference schemes [S] applied to similar nonstationary problems yield- 
ed more accurate results. It is shown below that in vibration problems the method of 

finite elements is effective. 

1. Let us assume that a body with a crack is subjected in addition to harmonic 
force components to static tension in such a way that the crack edges do not overlap. 
Since displacement are specified along a part of the boundary, the matrix of the 

system rigidity is not degenerate. This is of no importance in statics, since displace- 

ments in a rigid body as a whole do not affect the intensity coefficients, but is a 

necessary condition when the mode of free oscilations is to be determined. Although 

in the latter case analytic solutions are not available, the accuracy of computations 

can be tested by other means, as will be shown below. 

The equations of motion for an elastic body free of damping subjected to harmon- 
ic loading are of the form 

Mx" + Kx = f cos at 

where M and K I are matrices of mass and rigidity, 
ment vector of the system, and f the load vector. 

equations of equilibrium 

Kx = f 

(1.1) 

respectively, x is the displace- 
when o = 0, we have the 

(1.2) 
We denote by Uia the eigenvalues\n their ascending order and by xc*) the 

eigenvectors of the generalized problem in eigenvalues 

Kx = o”Mx , x(i)* ,l&fl = bij (1.3) 

When o + Oi and x (0) = 0 the general solution of Eq. (1.1) is 

(1.4) 
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where pI are undetermined coefficients. To te& the validity of (1.4) it is sufficient 
to~b~~~teit~to(~. l), multiply successively by xcijT~ where the subscript 2’ 
denotes transposition, and use (1.3) [3]. 

We similarly obtain the static solution 

s* = c (xtitTf) (i) 

2-x 
(5 

(1.5) 

The displacement vector of an elastic body uniquely defines the intensity coeffici- 
ents by a Linear functional. 

We denote by K* the static intensity coefficient that corresponds to 
fc@) the intensity coefficients which correspond to x(0* 

x,, and by 
The dimension of Kci) 

is determined with allowance for (1.3). 

We introduce the dimensionless coeffcients 

From (1.4) and (1.5) we have 

K ft) 
x(t) =- = ci cq 

K* 
a. ? q - 02 00s ob + 8,’ cos co< t) 

i 

(1.6) 

(1.71 

where (K (t) is the dynamic intensity coefficient under the condition 

2;ai=1 (1.8) 

Condition (1.8) may be taken as the criterion of accuracy of the dynamic intensity 
coefficient computation, provided that the static intensity factor J& appearing in 
the expression for 05~ in (1.6) is not computed by formula (1.5) and the second of 

formulas (1.6), but directly using the static system of equilibrium equations (1.2). 
Moreover condition (1.8) shows in the frequency region w < o1 the number of oscil- 

lation modes that are to be taken into account in (1.7). 
Thus the dynamic intensity factorsare determined with an error defined by the 

remainder / Xcq - 1 1. In other words, the error of determination of K (t) can be 
estimated by comparing the dynamic intensity coefficient at zero frequency with that 
of static intensity calculated by the equilibrium equations. This follows from the eq- 
uivalence of the second of equalities (I.. 6) and equality (1.8). Numerical computa- 

tions had shown that in the low frequency region it is sufficient to take into account 
the first eight oscillation modes, which results in an error in the calculated dynamic 

intensity coefficient not exceeding 6%. It appears that in the case of loading leading 
to normal rupture at the crack there always are two fairly large positive coefficients 

ai, i‘< 3, while negative iz, are small in modulus and occur only for i> 3, 

consequently, the quantity 

/c 

oi* 
a. 1 oi* - 08 

I 
>* 

and increases as 61 increases from zero to ol. 
If induced free oscillations are taken into account, the intensity factor amplitude 



Analysts of stress intensity factors in an oscillating plate 823 

may increase even further. For instance, let x (0) = 0, then 

@ia 
8Sr=--o* &+8_“4 

Since Oi are, as a rule,high, functions cos Wit may in a short time interval 
simultaneously reach extreme values with the same signs as those of &‘. The 
maximum of x (t) is then additiona~y defined by the sum 

c loit @?Ye+ >[zo Oi” >I 2 ai”- ($ 

For the determination of the singular stress fields at the crack it is necessary to 
~o~iderably reduce the diameter of finite elements close to the crack. However this 

leads to an increase of the order of related equations, and makes the computation 
ineffective. This can be avoided by placing at the crack tip a singular finite elem- 
ent whose strain field is approximated on the basis of analytic solutions for a region 
with a crack. Here, the construction of the singular element is based on the expans- 

ion of the strain field in the crack tip neighborho~ [4]. The universality of such 
expansions was shown in [5]. Derivation of the rigidity matrix for the singular ele- 
ment and examples of its application in plane static problems is described in [6]. 
The accuracy obtainable when using such finite elements is fairly high, in spite of 
the incompatibi~ty of the strains at the interface with conventional finite elements. 
In the case of short cracks the discrepancy between the computed stress intensity fac- 

tor and the analytic static solution for such cracks does not exceed 2%. A similar 
method was used in [7,8] in problems of bending. 

In the case of matrices of higher order the generalized problem in eigenvalues 
(1.3) cannot be reduced to the conventional problem with a single matrix (inversion 

of matrices leads to considerable errors), and it is not possible to reduce the order of 
matrices because of the necessity of exact determination of eigenvectors. Methods 

that use specific aspects of a problem (the band property of matrices, possibility of 
determining only part of the spectrum) have recently appeared (methods of simultane- 

ous iterations) [9]. First, we reduce (1.3) to the equivalent problems With a single 

matrix. 
Let x = LLT, h = 1169, x = LTp 

then instead of (1.3) we have 

Ax = hx, A = L+ML-T 

The multiplication L-~ML-T~ is carried out in three stages 

LTu = x, u = L--TX 
y = Mu, y = iuL-Tx 
Lv = yt v = L-‘ML-Tx 

(2.1) 

Let the eigenvalues in (2.1) be I & I.2 I X, I > _ . . > 1 A,, 1. If it is required 

to determine the tit IJZ eigenvalues. matrix II = tuI, us, , , _ , up] (m < p @ a) 
& used for corn~ta~o~. 

The iteration process consists of six stages: uT u = 1 (orthogonalization), 
y - AU, B = UTV, Bt* = k t* (exact or approximate determination of eigenvectors 
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t* 1 ,...I t,* of matrix B), and W = VT* (T* = [t,*, t,*, . . . , t4*]), U = W. 

3. As an illustration we shall consider a rectangular plate with an edge crack in 
a plane state of stress. One of the plate edges of length b is restrained, while the 

opposite edge is subjected alternatively to tension andcompression of the same intens- 
ity in conformity with a harmonic law. The plate has a crack of length z parallel 
to these sides located at the middle line of the plate whose other sides are of length a. 

Table 1 

l/b=O.i83 

0.32 
2.05 
2.54 
9.92 
9.29 

11.54 
14.74 
18.88 

0.165 

- 

- 

0.30 0.z 0.25 
1.69 1.27 1.12 
2.40 2.39 2.36 
8.40 7.71 7.19 
9.26 8.95 8.75 

11.41 11.26 11.23 
13.70 12.99 12.44 
18 05 15.66 14.08 

- 

- 
0.417 

0.16 

0.25 
2.36 
5.76 
8.57 

to.74 
11.44 
13.54 

Squares of dimensionless frequencies of free oscillations wnd2 = 02pab i E, where 

P is the plate density, and E is the Young’s modulus are shown in Table 1, for a 

number of relative lengths of cracks, and a Poisson ratio equal 0.3. Computations 
were carried out assuming a uniform distribution of elements, and the number of nodes 
varied from 58 to 66, depending on the crack length. Altogether 16 vibration 
modes were determined. 

Curves showing the dependence of maximum of x (r) = K (t) / K, defined in 

(1.7) On and2 appear in Fig. 1 for relative crack lengths 0.167, 0.25, and 0.417 

(curves 1-3, respectively). 
The dynamic intensity coefficient for a given amplitude of the applied stress 5 

can be obtained from these curves and the static intensity coefficient K, which is of 

the form K, = 5 v% F (1 / b, a / b). In this example computations were based on a 
ratio of plate sides a / b = 1.17 . Function ‘F (I / b, a / b) for the investigated crack 

lengths was equal 1.40, 1.65, and 2.53 respectively, 

Fig. 1 
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The shape of curves Z-3 implies that the danger of brittle fracture increases with 
increasing frequency of load [reversal]. A similar result was obtained in [lo] in con- 

nection with the solution of the problem of oscillations of a plane with a system of 
cracks and of an infinite strip with a crack. Hence the design of structural elements 
subjected to high-frequency loading must be aimed at increasing the natural frequency 

of their oscillations. Certain conclusions about the magni~de of frequencies can be 
arrived at on the basis of corollaries of the Courant-Fischer theorem [33, Thus, when 
the oscillation frequencies of a plate containing a crack are o1 < 0s < . . . and 
the frequency of a plate with a shorter crack, which in finite element discretization 

may be considered equal to the first one, except for r relations imposed on it, have 
the frequencies ml’ < os‘ < . . ., , then that theorem implies that oi -< mtr f Oi+r* 

Thus for the evaluation of free oscillation limits it is sufficient to determine the 
frequencies of a plate containing a crack or a system of crack of maximum length. 
On the basis of the Courant-Fischer theorem it is possible to state that an increase 
of oscillation frequencies can be obtained by reducing the length of cracks, securing 

part of the boundary, reducing [the extent ofi plastic zones, reducing the structure 
mass and increasing its rigidity (e. g. , by adding stiffening ribs), etc. 

The author thanks V. Z. Parton, V, N. Moskalenko, and E. M. Dashevskii for 
their interest in this work. 
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